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I. INTRODUCTION 

RECENTLY some calculations of the absorption of 
electromagnetic waves in a plasma have been 

given. The absorption in classical plasmas has been 
treated with an elementary model by Dawson and 
Oberman1 and by Oberman, Ron and Dawson2 via the 
Liouville hierarchy. The latter work gives a complete 
classical derivation of the high-frequency conductivity 
of a plasma taking into account properly collective ef
fects. Another approach to the classical problem has 
been given by Perel and Eliashberg3 who begin with a 
quantum-mechanical diagram technique, but pass to 
the classical limit, before obtaining any results. Their 
procedure from the beginning is asymmetrical in the 

* This work was accomplished under the auspices of the U. S. 
Atomic Energy Commission. 

t On leave of absence from Technion; IIT, Haifa, Israel. 
1 J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962). 
2 C. Oberman, A. Ron and J. Dawson, Phys. Fluids 5, 1514 

(1962). 
a V. I. Perel and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 

41, 886 (1961) [translation: Soviet Phys.—JETP 14, 633 (1962)]. 
(Hereafter referred to as PE.) 
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1 r+QO d u 
*2(*) = — / (k/k')S(- (a>+kv)/k'; k',k) 

^ri,2±(^) = lim ^i,2(uzLie). 

The "barring" operation is the multiplication by 
d(u— k-y) and application of fds. The contour C is a 
line from — oo to + <*> an infinitesimal distance below 
the real axis. This notation agrees essentially with that 
introduced by Guernsey. The algebra used to arrive 
at (Al) and (A2) is tedious but straightforward. 

treatment of ions and electrons (they include the ions 
only in the dielectric function and neglect their direct 
contribution to the current). Their further limiting pro
cedure in letting the ion mass become infinite is ambigu
ous, and it is not clear from their article to what degree 
of ion correlation their result is to apply. (See Discus
sion.) A similar approach to the same problem has been 
given recently by DuBois, Gilinksy, and Kivelson.4 

Their results disagree with those of references 1 and 2 
and, hence, with those of the present work, and we be
lieve because of the nonsystematic omission of a certain 
class of diagrams. Note added in proof. At the present 
authors' suggestion this omission has been corrected and 
the results incorporated in their published version [Phys. 
Rev. 129, 2376 (1963)]. 

The purpose of the present paper is to study the ab
sorption problem in both classical and quantum plasmas. 
Perel and Eliashberg3 study the problem beginning with 

4 D . F. Dubois, V. Gilinsky, and M. G. Kivelson, Phys. Rev. 
Letters 8, 419 (1962). AEG Report, RM-3224-AEC, 1962 (un
published). We are indebted to these authors for sending us a 
copy of their work before publication. 
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A systematic study of the absorption of electromagnetic waves in a quantum (classical) plasma is given, 
for waves whose frequencies are high compared to the collision frequency and whose wavelengths are long 
compared to the Bohr (Debye) radius. The treatment rests on the introduction of the temperature-dependent 
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and with Oberman, Ron, and Dawson. The special case is treated of a quantum system of electrons in the 
presence of fixed ion scatterers. 
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Kubo's5 expression for the conductivity in terms of the 
autocorrelation function of the current operators and 
then use the temperature-dependent Green's function 
method; however, we generalized their treatment to a 
full quantum plasma (not only the semiclassical limit) 
of multispecie systems. We obtain the leading asymp
totic contribution to the complex conductivity in a 
quantum (classical) plasma, when the number of par
ticles in the Bohr (Debye) sphere is large, the frequency 
is higher than the collision frequency, and the wave
length of the incident field is larger than the Bohr 
(Debye) radius. Furthermore, this expression for the 
conductivity is valid for all temperatures, and is in 
complete agreement with the classical results of refer
ences (1) and (2). 

Section II deals with the well-known relation between 
Kubo's formula for the conductivity and the tempera
ture-dependent Green's function. We employ the dia
gram technique of Luttinger and Ward6 in Sec. I l l to 
obtain our general result for the absorption coefficient. 
In Sec. IV we discuss some special cases, namely the 
classical multispecie system, a semiclassical hydrogenic 
plasma with infinitly heavy ions (taking into account 
their thermal equilibrium correlations), and a quantum 
plasma with random distributed fixed ions (impurity 
scatterers). We conclude our paper, Sec. V, with a 
brief discussion of the results. 

II. GENERAL FORMULATION OF THE PROBLEM 

We start from the general expression of the conduc
tivity for a system of charged particles as given by 
Kubo4 

1 r00 

a>(k,co) = — / dre™7 

V Jo 

X I dXiJ.ik, r-ih\)jv(-\i, 0)>, (1) 
Jo 

where k and o> are the wave vector and the frequency of 
the electromagnetic wave, 

i(k,t)==eiHt'hi(kfl)e-iHtt* (2) 

is the Fourier transform of the current operator in the 
Heisenberg representation, and the average of an oper
ator o is given by 

<0) = Tr{6^+S* f»r-H)0y (3) 

In Eqs. (2) and (3), H represents the total Hamiltonian 
of the system, £2, is defined by 

where /xs and N8 are, respectively, the chemical potential 
and the number operator of the s species in the system, 
and (3 the inverse of the temperature in energy units. 

e R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
6 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 

(Hereafter referred to as LW.) 

We use the following convention for the Fourier 
transforms: 

1 r 1 
/(x,0 = — / da>— £ en**-*-*/(k,a>) (5) 

2TCJ V k 
and 

/(k,w)= idt I dxeia»ik-xf(x,t). 

In order to render Eq. (1) in a more convenient form 
we integrate it by parts and obtain 

o>(k,co) = cr̂ Ci) (k,co)+o><2> (k,a>), (6) 
where 

1 1 r? 
a^M(k,co) = - - / dX0'M(k, - * * X ) j , ( - k , 0)) 

io) V J o 

1 
= i Z ) <*?=(To(co). (7) 

47TCO s 

cos
2 = ̂ Tres

2ns/ins is the plasma frequency, es is the charge, 
ns is the average particle density and m8 is the particle 
mass of the 5 species, and 

, , , « & « ) = - - - / ' dre^(UAKr),M-K0)D. (8) 
tua V Jo 

In Eq. (8) [ , ] denotes the commutator. 
In order to facilitate the temperature-dependent 

Green's function formalism7 we define a function 

1 r00 du' 
F M , (M = - / ( l - ^ - ^ M k / * ' ) , (9) 

ft J-O0o)/—z 

which is analytic in the entire z plan, except for a cut on 
the real axis. $M„(k,co) is real and given by 

1 
<MM=- E expBs(o+E.M.^(n)-£«)] 

Jf m,n 

X<»liM(k,0)|»><f»|i,(-k, 0)|n> 

/ Em—En\ 
X V " — > (10) 

where m and n represent eigenstates of the Hamiltonian 
and the number operator, with 

H\n)=En\n\ N8\n)=N8^\n), (11) 

and Ns
M = N8(

m) in Eq. (10) due to the fact that j 
commutes with the number operator. If we represent 
explicitly the average in Eq. (8) as a sum over states 
[see Eq. (10)] and use the fact that N8

(n) = N8
(m) we 

7 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinsky, Zh. 
Eksperim. i Teor. Fiz. 36, 900 (1959) [translation: Soviet Phys.— 
JETP 9, 636 (1959)]. Many other references can be found in 
reference 6, 
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obtain 
1 

o> (k,w) = —FM„+(k,co), (12) 

where for any function f(z) in the complex z plane, we 
denote by 

/ * ( « ) = lim /(«) 6 - > + 0 . (13) 

In order to obtain the function Y(k,z) of Eq. (8) 
we define a Green's function 

JfM,(k,«) = -<r{ i M (k ,« )y , ( -k ,0 )}> ; -/3<u</3, (14) 

where T1 is the Dyson ordering operator and 

i(k,u) = euHj(kfl)er«s. (15) 

By expressing our Green's function M(k,u) in terms of 
the sum over states, as in Eq. (10), one easily convinces 
himself that M(k,u) is a periodic function in u, 

Af/i*(k, «+jS) = AfM„(k,«). 

Thus, its "Fourier transform" with respect to u, 

small. This point has been discussed in detail by 
Balescu.8 

We write now our Green's function in the second 
quantization formalism in the interaction representa
tion as 

&2 0 0 . 

ilfM„(k,«) = E PMU(P))cl 

V «,«' msms> P,P' 

X(r{ap+k/2+(^,^)ap_k/2(^^) 

X«p-k/2+(^,0)ap ,+ k / 2(/,0)^(/?)})o, (18) 

where use has been made of the second quantization 
representation of the current operator 

es 
j(k) = * E — E Vav^/2+(s)a^k/2(s). (19) 

s ms P 

The symbol ( )0 corresponds to the average defined in 
Eq. (3) for noninteracting particles, 

U(0) = exp 

and 
H duHi(u) (20) 

M, liv(k,n) = du ei2rnu/PMM„(k,«) 

» = 0 , =bl, ± 2 , . . . , (16) 
enjoys the property 

1 f da>' 
£,») = - / ; 

ft J a)'—i2irn 

1 4TT 

Hr=—E — E e8e8' E % k / 2 + ( ^ P ' - k / 2 + ( ^ ) 
2 F A; k2 *.*' p,p' 

X <v+k/2 Cy')tfP-k/2 CO. (21) 

P^s &#X 

J f „ ( M = - / — — ( l - ^ > M , ( k , c o ' ) . (17) 

If we now compare Eqs. (17) and (9) we realize that 
F(k,z) is the analytical continuation of M(k,n) from 
the infinite set of points ilim/fifi (n>0) on the positive 
imaginary axis of z to the entire upper half-plane of z. 
In conclusion we see that our problem reduces to the 
calculation of M (k,w) which will be evaluated using the 
well-known Green's function diagram technique. 

III. EVALUATION OF THE ABSORPTION 
COEFFICIENT 

We turn now to the calculation of M (k,n) using per
turbation expansion, and then resumming all diagrams 
(terms) which contribute to the conductivity for quan
tum (classical) plasma, when the number of particles 
in the Bohr (Debye) sphere is large, the frequency is 
high compared to the collision frequency, and the wave
length of the incident field is large compared to the Bohr 
(Debye) radius. Thus, in resumming the diagrams 
(terms) of the perturbation expansion, we consider 
processes proportional to the number of particles, N, 
as finite and include them to all orders while those pro
cesses which are not proportional to N are treated as 

FIG. 1. The class of diagrams which contribute to 
the high-frequency conductivity. 

8 R. Balescu, Phys. Fluids 4, 94 (1961). Many references con
cerning quantum and classical plasmas can be found there. 
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The basic rules for the perturbation expansion of £, am 

M(k,n) are given by Luttinger and Ward.6 We use their q s*s(^sv 
diagram technique and indicate by a solid line with £"? I \ q 
labels s, p , a n d f i t h e ^-species free-particle p ropaga to r FIG. 2. The inte- L j 1 £ + T 
of wave vec tor p a n d " e n e r g y " U (we res t r ic t ourself to gral equation for the s 1 | * 
£ i \ effective interaction. \ J *e um 
fermions only) a , a m j , a m ^ A J "s 

. FIG. 2 

r,w-«r(2H-iy-M.; /=o,±i,±2,.. . , (22) where 

£ M — — ( ? s ( < W ) = — Z ~ Z ^ p + q / 2 ( r ? + « m , « s ) G p _ q / 2 G v ) 

2m, " ( 2 5 ) 

a n d b y d o t t e d line t he in te rac t ion 4:ir/k2. T o each ver tex = / j p p+q 2 p~q/2 

we assign a charge es given by the s label of the particle. (27r)3./ ep+q/2(s) — ep~q/2(5) —cem 

In the high-frequency long-wavelength region we and 
take into account a generalized version of the diagrams np(s) = [_e^

€p{s)~^s+1]-1, (26) 
considered b y Perel a n d Eliashberg.3 Our generalizat ion . , _ . v j .. . r , 

, , • 1 • n • • • i 4. is the Fe rmi d is t r ibut ion of t he s species. 
corresponds to considering all species m equivalent TTT , , j , j .. ^f r . 
manner, see Fig. 1. The wavy line represents the effec- . W e n™.ca ^ l a t e the contribution of the diagrams, 
tive potential shown in Fig. 2 and it is given by given m F l g ; 1 for the case k = 0 . We assert that these 

^ are the leading asymptotic terms for long wavelength. 
4^ 4TT 1 1 Using the prescription of Luttinger and Ward6 for the 

Uq(am)^U(q,am)= 1 Z es
2— Z - m a n y species sys tem unde r considerat ion we ob ta in 

q2 q2 * V P 0 
fi2 eses

f 

X Z GP+q/2(f H-am, s)Gv-q/2(?i,s)Uq(am), (23) MliV(o)n)^Mflv(k=0} w f t ) = - Z Z PvpJ 
i V s,s' msms

f P.P' 
where am=i27rw(l/jS), m=0, ± 1 , ± 2 , ••• . We can B 
now cast Eq. (23) into the form X Z #p P ' ( 0 (wn ,v ' ) , (27) 

i=l 

4x1"" 4r7T T * 
tf,(am)=— 1 £ e*2<2<z(cw) , (24) w h e r e KvP{i) («»>*/ ) corresponds to t h e ith d i ag ram of 

q2L q2 s J Fig. 1 1 1 1 
i£ P P ' ( 1 ) (o)n,s,sf) = dss>es

2 Z ^ P - P ' ( « m ) ~ Z) Gp(ths)Gv({i+a)n, s)Gv>(£i+un+am, s)Gp*(Zi+am, s), 
V0 m 0 z 

1 1 1 
Kvr>>(2)(G)n,S,S,) = dss>dvv>es

2— Z ~ Z ^ q ( « m ) - Z [ G p ( f ^ ) ] 2 G p - q ( f * - a m , $)Gp(f *-*>*, $), 
F q 13 m 0 z 

1 1 
i ^ p p ' ( 3 ) ( W n , v O = = 5 s s ' 5 p p ' e s

2 — Z — Z ^ q W P p l f ^ J l ^ p + q l ^ + a m , s )G p ( f z+CO w , $ ) , 
F q 0 2 m,l 

I 1 1 
2T,P,<

4> ( o ^ v ' ) = es
2<V2— Z - Z t / q k ) ^ , k - w w ) - Z GpGv)G p ( r i -«n , *) (28) 

F2 q 0 * 0 1 
1 

XGp-q(f I —a«, $)- Z Gp'G>/)Gp ' ( f I ' — «n, ^)Gp'-q(f I'—Ow, 5'), 
0 I' 

I I 1 
-K'pp'^HwnjVO^^2^'2— Z - Z Uq(am)Uq(am—o)ny Z Gv(£i,s) 

V2 i 0 « 0 q ' 

1 
X G p ( f z - c o w , s ) G > _ q ( f z - a m , ^ ) - Z G P ' ( f z ' / )Gp ' ( f z '+co n , s ' )Gp'+ q ( { > + « « , $')• 

0 i' 
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We now carry out the summation over / and /' by Equations (29) and (30) are then our generalization of 
converting the sums into integrals (see LW6). After Eq. (15) of P E to a system of arbitrary number of 
considerable manipulations (see an example in Ap
pendix A) we obtain 

1 f 
Mpy(a>n) = / 

2 J 

dq 

( 2 ^ 
q&v Z 

x _ K(«»,v'), (29) 
ms\ms ins>/ 

where 
h2 1 

species. We wish to point out that without this generali
zation one would be led to the incorrect result of PE, 
for finite-mass ratio [see P E Eqs. (19)-(22)]. I t is 
easily seen that in Eq, (29) the sum over s' runs only on 
species different from s. This indicates that for a system 
of one species (with smeared-out background) the real 
part of the absorbtion coefficient vanishes and the 
imaginary part is given by Eq. (7) only. 

Equations (29) and (30) are not suitable for the 
analytical continuation to the upper z half-plane. In 
order to perform the continuation one has first to evalu
ate the summation over m. We adopt essentially a 
method developed by P E to carry out this summation 
and for the benefit of the reader it is given in Appendix B. 
We now use Eq. (B8) and analytically continued Eq. 
(30) to obtain 

Fq(con,vO = 2 Uq(am)Uq(am+o)n) 

XZQq(am+a)n, s) — Qq(am,s)^\ 

XLQq(am+Un,s')-Qq(am,s')J (30) 

IPC 
F q + ( « , v / ) = - 7 - / dxH(x){U+(x)U+(x+ho>)lQ+(x+fio>, ^ ) - f t + M ] [ f t + ( * + f o , * ' ) - & + M ] 

CO2 ITT J 

- Uq~(x)U+(x+fioi)lQ+(x+h^ s)-Qq-(x,s)jQ+(x+fio>, s')~Q<rMl}. 

In Eq. (30) we denote by P the principal value, 
#(#)== [ e ^ - l ] - i , 

1 C np+q/2(s)~n^q/2(s) 

(2TT)3 J 

and 

Qt- dp-
€P+q/2(<?)— €p_q/2(^) — X=Fie 

(30) 

(31) 

(32) 

Uq
±(x) is determined by Eq. (24), replacing Qq(am,s) by Qq

±(x7s). 
Now we make use of Eqs. (7), (12), (29), (30), and (31) to obtain our final result for the complex conductivity. 

47T 

a(co) = a0(o))+i— ]£ e8
2< 

3 c o 3 s,sf 

es/e8es>\l f PC 
- I / dq q"— / dxle^-lj-1 

ns\ms msJ (2ir)z J 2iri J ms\ms msJ (2irY 

X{U+(x)U+(x+hu)[Q+(x+fio>, s)-Q+(x,s)jQ+(x+fio), * ' ) - & + ( * , * ' ) ] 

- Uq-(x)U+(x+ho3)[Q+(x+fia>, s)-Qq-(x,s)XQa+(x+%o>, s')-Q<T(x,s')~]}. (33) 

In the last equation use has been made of the fact that 
Qq depends only on the absolute value of q, and that 
v»v(o>) — 5M„(r(a>). This result is rather complicated but in 
principle can be evaluated analytically or numerically 
for specific problems. I t is clear that the result is appli
cable for both classical and quantum plasmas for any 
mass ratio of the species of the system, and for tempera
tures, where the average potential energy of interaction 
per particle is smaller than the average kinetic energy. 

IV. SPECIAL CASES 

In this section we discuss some interesting special 
cases where Eq. (33) can be cast in simpler forms. 

A. Classical P lasmas 

We divide our classical result into two kinds: (i) 
strictly classical and (ii) semiclassical. By strictly 
classical we understand results which are independent 

of h, and by semiclassical we understand inclusion of 
some ^-dependent terms which can prevent in some 
specific situations the divergences caused by large-angle 
collisions. 

In order to obtain the strictly classical limit of Eq. 
(33) we first make the transformation x=huq, and then 

(uys) becomes Q,* 

QtH«,s)= :— \d\-
q- 0/3v)/o(v) 

(34) 

In Eq. (34) use has been made of the following 
transformations 

p —> tn8\/ft, 

/2wh\* ft df0(v,s) 
^P+q/2(*)-Wp-q/2(?) - » ( 1 U8—q , (35) 

\msJ ms dv 
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where now fo(\,s) is the Maxwell distribution for the s and thus 
species, and 

du'-^^-, (36) Ua+(u)-+--—. (38) 
«'-«=F*e 1 P(?>«) 

with /„(«) the one-dimensional distribution. We also l n the classical limit 
introduce the classical dielectric constant 

r du' o>? d [ff(*);|-1=€f t o-l=«*»' '-l-»0gft«. (39) 
P(g,u)= 1+ / £ ( - 1 ) Uu% (37) 

J u—u—i -ie s q2 6V Thus, 

lu 

, u+w) 

47r / es e8>\ 1 fqm** P r™ du 1 
a(o)) = a0(o))+i—X eso)s

2KsM J / dq / 

x j [(^+z^)/s
+(w+w)-w/+(w)][(w+w)/s^(^+w)-w/^+(w)] 

lp(g,«) 

[(w+^)/s+(w+w)-w/s-W][(^+w)/^+(w+z^)-w/s -(«)] L (40) 
p*(q,u) J 

Equation (40) is a trivial generalization of the result given by Oberman et al2 for any number of species. In Eq. (40) 

K2=^e2n8$ (41) 

is the square of the reciprocal of the Debye radius for the 5 species, gmax is the cutoff,9 and w=o)/q. A further simpli
fication of Eq. (40) can be achieved by the following procedure. The first part of the integral of Eq. (40) is analytic 
in the entire upper half-plane except a pole at u==0 and can be, therefore, integrated easily. In the second part of 
the integrand we make the transformation 

1 1 
(U+W)fa+(U+W)[m(u+W)fa'+(U+W) — Ufa~(u)'] - > 

wp*(p)p(g,w+w) 

ufr(u)[_(u+w)fs>
+(u+w) — uf8~(u)~], 

u+w p* (q,u)p (q, u+w) 
to obtain 

47r / e8 es> \ 1 f w 
a(o)) = (To(a))+i— £ eso)8

2K8
2[ J / dq 

3co3*,*' \ms m8J(2<iryJ p(qfi) 

X p(qfi)— / du , (42) 
12 p(q,w) 2iri J p*(q,u)p(q,u+w)L u u+w J J 

which can be easily identified with Eq. (54) of Oberman hydrogenic plasma with infinite ion mass we obtain10 

et al2 for the hydrogenic plasma, and thus we are in 
complete agreement with their results. ^ <r(w) = o-0f«)l 1 - — — C dq ^ W / s m ^ 9 + 

We now turn to a brief discussion of the semiclassical v v | 3^ mo)2 J ( 

case. Here Q± of Eq. (34) is replaced by 
q2+2K2 

n8 f q-(3/dv)/0(v) X| 1 , (44) 
QqHu,s) = e-*2MM™*— dv , (43) lq2+K2 q2D(q,a>)J\ 

m8 J q'Y—qu^Fie 
where m and e stand for the electron mass and charge, 

where in the passage to the classical limit of n^/sfr) K2 is given by Eq. (44) and D(q,o)) is the dielectric 
of Eq. (35) we keep in the exponential the h2q2 term. constant given in Eq. (37) for system of electrons only. 
The persistence of this term would lead to an inclusion W e wish t o p o m t o u t t n a t for the real part of <r(o>) the 
of a weighting function of the type «r*V/>/8« i n t h e i n t e . i n t e g r a l o v e r q d i v e r g e s logarithmically in the strictly 
grands of Eqs. (40) and (42). For the specific case of classical case, and therefore, a cutoff qma3C= (e2/?)-1 is in-

9 L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience 10This equation agrees in the strictly classical case(# = 0) with 
Publishers, Inc., New York, 1956), p. 76. Eqs. (58) and (59) of reference 2. 



18 A. R O N A N D N . T Z O A R 

troduced (see discussion of this point in reference 9). 
In the semiclassical case although the integral con
verges, the inclusion of large-angle collisions may render 
another effective cutoff to be invoked for essentially 
smaller values of q. Equation (44), as it stands, is rigor
ously valid when the Born approximation for electron-
ion scattering is valid, namely, when kT=l/P<^l 
Rydberg. 

B. Quantum Plasmas 

The general expression for the high-frequency conduc
tivity for quantum systems is given by Eq. (33). In 
this section we restrict ourself to a specific problem of 
ion-electron quantum plasma where the ions are ran
domly distributed fixed scatterers. This treatment may 
find its application in some solid-state problems, which 
we intend to discuss in a future communication. 

We rewrite Eq. (33) for the case of an ion-electron 
system, where all the terms which depend explicitly 
on the inverse ion mass are omitted, 

< 8 e6 r P 
a(co) = (To(o))-\-i / dq 

3co3 m2 J 2wi 

X jdx(e^~l)-1 

J e(q, %+fi(x>) 

xf——[0«+M-fo)-g«+(*)] 

l 

-——r[e«+(*+fco)-er(*)] 
e*(q,x) 

XlQq
+(x+h^)-Qr(x)~\V (45) 

Here 
47T 

e(q,x) = 1 <?[Qq+(x)+Q+(x)l (46) 
q2 

stands for the usual retarded dielectric constant of the 
ion-electron system and Qq(x) and Qq(x) represent, 
respectively, the electron and ion Q's of Eq. (32). 

In order to carry out the limit of fixed-ion scatterers 
we treat the ions classically, namely, we replace the 
Q's by their classical representation, Eq. (34), and then 
prescribe for the ions 

1 
fiHu) = -P-±i<irb(u) (47) 

u 
[namely, substitute fi(u) = 5 (u) in Eq. (36)]. One should 
notice now that in this limit 

47re2 

e(q,x) -> P(q,x) = 1 Q+(x), (48) 
q2 

while 

(«/»*- l)ZQq
+(x+tia>)-Qq±(x)'] - * ±iim8(x), (49) 

where n is the average electron or ion density. Thus, we 
obtain 

, , , , , . 8 e" / \ G«+(*")-G«(o) 
cr(a)) = (To(oo)-\-t n I dq 

3^m2 J P(qfi)P(qfia>) 

= *o(p)\l —I(a>)l, (50) 

where 

c9(o)=ice9
+(o)+g4-(o)i 

and 
Ifa)=[dqf( Y (51) 

This result is similar in its form to the classical result 
obtained by Dawson and Oberman.1 

V. DISCUSSION 

In this paper we have derived a general expression of 
the absorption coefficient of electromagnetic waves in 
quantum and classical plasma. Our result, Eq. (33), is 
valid for multispecies systems of charged particles. With 
the restriction to applied fields of high-frequency and 
long wavelength, we have properly accounted for col
lective effects. We contend that these results represent 
the most complete and systematic expression for the 
conductivity [hence, immediately for the absorption 
coefficient of plasmas, see reference 1]. The classical 
limit of our result is in complete agreement with the 
previous results of references 1 and 2 and we refer the 
reader to these papers for further discussion of the clas
sical case. An interesting new result is our expression 
for the conductivity of a quantum system of electrons 
in the presence of heavy scatterers as given by Eq. (51). 
We reserve the discussion of this result and its possible 
implication for solid-state systems to subsequent 
publication. 

In comparing our classical and semiclassical results 
with those of PE3 we conclude that their results for 
finite ratio of the electron-ion mass [see Eqs. (19)-(22) 
of reference 3~] are incorrect but that their final result for 
infinitely heavy ions [ P E Eq. (24)] can be cast into our 
result given by Eq. (44) [see reference 2, Appendix B for 
the evaluation of the integrals given in PE Eq. (24)]. 
However, there is a point which we would like to clarify 
as much as we can, that is, in principle, we disagree with 
the result of PE. PE have performed their mass-limiting 
procedure in several stages. From the beginning, up to 
Eq. (22) of their paper, they have neglected all terms 
explicitly proportional to the mass ratio; this amounts to 
the direct contribution of the ions to the current. From 
this point on one must be extremely cautious and realize, 
especially in performing velocity integrals, that the 
mass ratio is not the only quantity which can be small 
in the problem. If the mass ratio is considered small but 
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finite then all integrals must be performed first and then 
the limit taken. If this course is followed one obtains 
results different from PE, see reference 2, Eq. (71). I t 
seems to us that this is the course that P E thought they 
pursued but, in fact, did not. The result they do obtain 
is that for a plasma model in which massive ions are 
thrown into an electron plasma, not at random, but 
respecting the thermal-equilibrium Debye correlation 
for finite temperature, but having no dynamics. This 
result can be obtained by doing the mass ratio limit 
first, and then performing velocity integrals, as was 
shown in the classical treatment in reference 2, and in 
the present work. 

A comparison of our classical results with the results 
of Dubois, Gilinsky and Kivelson as given in their 
letter4 is difficult to make. However, from a study of 
their more complete report4 [see Eq. (6.20) of the re
por t ] we are led to the conclusion, in agreement with 
references 1 and 2, that their result is incorrect. This is 
probably due to their omission of an important class of 
diagrams. 
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APPENDIX A. 

We wish to represent here an example of the calcula
tion of one diagram of Fig. 1, namely diagrams 1-4. To 
calculate the contribution of this diagram to M^^n) 
we first substitute4 K of Eq. (28) into Eq. (27) and re
place Gp by its representation, Eq. (22); 

M^ (o>„)=— z ^ - L & . # / £ - £ uq(am) 

F 3 s,s' msms> P,P' q j8 « 

X Uq(am—o)n)Lp(amjo)n,s)Lv> (am,con,s'), (Al) 

where 
1 1 1 

Lv(am,a)n,s) = ~Z 

ImC 1 — H—A 

FIG. 3. The con
tour of integration 
used in Eq. (A3). 

(X) 
- J = 3 

-JZi7-rH5£ 

1 
X-

flfr)— «m~ €j>-a(s) 
(A2) 

Now to perform the summation we replace f i by f (see 
LW) and write Lp as an integral along a path C given in 
Fig. 3 

1 r 1 
Lp(am,a>n,s) = — / Jf le^-^+lJ-1: 

1 1 

x-f—a)n— ep(s) $—am— €p_q0O 
• (A3) 

This integral can be evaluated by Cauchy's theorem 
to give 

Lp(am,wn,s) 

= C ^ ^ ^ + I H - ^ ^ - eP_q(s)+ ep(s)]"1 

_|_ [V [«*(«)+«»-/*.] + l]~1[co„]-1 

X[o)n—oim— ep-qCO+ep^)] - 1 

X [ — 0)n+OLm+ €i>-q(s) + €p(s)']-1 

X E a m - e p - g W + ^ p ^ J - 1 . (A4) 

If we now realize that 
g/Scon = (flam =:£&•* — ^ 

and use the definition of Eq. (26), we get 

1 
Lv (am,o>n,s) = —[wp_q (s) — np(s)2 

X{[oim—wn— e p ^ + e p - q ^ ) ] " 1 

-[am- ep(s)- ep-q^)]-1}, (A5) 
and thus 

h2 e ze 'Z 1 /* 1 

JfM/4)(«») = — L — Uq-Z Uq(am) 
o)n

2 s,af msms> (27r)3 J fi ™ 
X U q(am—o>^R»(am,Un,s)Rv(amyo)n,s). (A6) 

and 

Rfl(am,a)n,s) = —— / dp ( £ M + | ? M ) 
(2TT)3 J 

X [ % q / 2 W - W p - q / 2 W ] 

X C ^ - ^ - A ^ - ^ - A ) - 1 ] , (A7) 
where 

A = € p + q / 2 ( ^ ) — €p_q/2(«y), 

and F _ 1 ^ q was replaced by 1/ (27T)3./*dq. If we use 
Eq. (25) we obtain 

Ry.((Xm&n,s) = lqll[(2q(am--Uni s) — Qq(am,s)'], (A8) 

and finally 
1 fi2 e ze /3 1 C 1 

MM/4> (Ww) = £ — / dq q»qv- E #«(««.) 

4 o^2 s,8' wsws> (27r)3 ./ jS •» 

XUq(am—o)n)[Qq(am—o)ny s)—Qq(am,s)~] 

XtQq(am-o>n,s')-Qq(am,s')J (A9) 
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APPENDIX B. 

In this Appendix we wish to describe briefly PE's 
method of evaluating the sum 

1 
/(«n) = - 2 <P («m)^ {0Lm+W») 

P m 
am=i27rm/p tn=0, dbl, ±2 , • • • 

G>n=i2irtn/I3 n=l, 2, 3, • - •, (Bl) 

where <p(am) and (̂<am) are either our Qq(am) or Uq(am). 
Define <pR(a) and ^B(a) as the analytical continuation 
of <p(am) and ip(am), respectively, to the upper half-
plane, and <pA(a), \//A(a) to the lower half-plane. It is 
easily seen that if at least one of the functions <p or \p 
coincide with Q the analytical continuation of <pp goes 
to zero at infinity at least as or2; and both 

If we introduce the function 

H(a)=(eP«-l)-1 (B3) 

and 

\<pR(a) for lma>0 

l<pA(a) for lma<0 

iypR(a) for lma>0 

\ypA(a) for lma<0, 

have a cut along the real axis of a. 

Im a 

(B2) 

rtyP Z~?n r Q=x-ay-k/ 

which has poles at the points am=i2irtn/l3, and the con
tour C in the a plane (see Fig. 4), we are able to repre
sent f(con) as 

/(w„)= ; / daH(a)<p(a)^(a+o)n) 
2wi J c 

1 
X H > ( 0 ) ^ n ) + ^ ( - o O \ K 0 ) ] . (B4) 

To proceed we carry out the integration of (B4), noticing 
that the large circle does not contribute to the integral, 
and that the integrals along the small semicircles around 
a = 0 anda= —- co„ just cancel the last term on the right-
hand side of Eq. (B4). Thus, we get 

/(«») = 
p r 

2iri J -oo 
dx 

FIG. 4. The contour of integration used in Eq. (B4). 

XH(x){l<pR(x+ie)- <pA(x-ie)2^R(x+o)n) 

+ <pA{x-o>n)fyR(x+ie)-$A(x-ie)~]}, (B5) 

where P stands for the principal value and e —» 0+. If 
we now take into account the fact that x is real and o>n 

is imaginary we easily establish the relation 

<pA(x—Wn)=<pB(x+<»>n), (B6) 

and with Eq. (B2) and the definition of Eq. (13), we 
obtain 

P r 
/((0n) = / dxH{x){[_ip+{x)-ip-{x)~]^R{x+0)n) 

2iri J 
+ <PR(x+a>n)[}f,+ (x)-xl,-(x)l}. (B7) 

Equation (B7) is our required result and it can be gener
alized to any combination of Q's and J7's provided that 
at least one Q is present. 

It is now easy to continue /(con) to the upper half-
plane of co and to get finally 

/ ( „ ) = — / dx H(x){l(p+(x)-<p-(x)^+(x+fi^) 
2m J 

+ ?+(*+to)[^(*)-tfr-(*)]}. (B8) 


